Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 111

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Establishment of 3-D dose dispersion forecasting method and development of in-structure survey using the transparency difference of each line gamma-ray (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Kyoto University*

JAEA-Review 2023-028, 54 Pages, 2024/03

JAEA-Review-2023-028.pdf:3.81MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Establishment of 3-D dose dispersion forecasting method and development of in-structure survey using the transparency difference of each line gamma-ray" conducted in FY2022. We realized an electron track detecting Compton camera (ETCC) that can measure $$gamma$$-ray images (linear images) with the bijective projection. In the "Quantitative analysis of radioactivity distribution by imaging of high radiation field environment using gamma-ray imaging spectroscopy" (hereinafter referred to as the previous project) adopted in FY2018, the 1 km square area including the reactor buildings was imaged at once.

Journal Articles

Quantitative visualization of a radioactive plume with harmonizing gamma-ray imaging spectrometry and real-time atmospheric dispersion simulation based on 3D wind observation

Nagai, Haruyasu; Furuta, Yoshihiro*; Nakayama, Hiromasa; Satoh, Daiki

Journal of Nuclear Science and Technology, 60(11), p.1345 - 1360, 2023/11

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

A novel monitoring method for the quantitative visualization of 3D distribution of a radioactive plume and source term estimation of released radionuclides is proposed and its feasibility is demonstrated by preliminary test. The proposed method is the combination of gamma-ray imaging spectroscopy with the Electron Tracking Compton Camera (ETCC) and real-time high-resolution atmospheric dispersion simulation based on 3D wind observation with Doppler lidar. The 3D distribution of a specific radionuclide in a target radioactive plume is inversely reconstructed from line gamma-ray images from each radionuclide by several ETCCs located around the target by harmonizing with the air concentration distribution pattern of the plume predicted by real-time atmospheric dispersion simulation. A prototype of the analysis method was developed, showing a sufficient performance in several test cases using hypothetical data generated by numerical simulations of atmospheric dispersion and radiation transport.

Journal Articles

Radiation imaging of a highly contaminated filter train inside Fukushima Daiichi Nuclear Power Station Unit 2 using an integrated Radiation Imaging System based on a Compton camera

Sato, Yuki; Terasaka, Yuta

Journal of Nuclear Science and Technology, 60(8), p.1013 - 1026, 2023/08

 Times Cited Count:5 Percentile:98.92(Nuclear Science & Technology)

JAEA Reports

Development of high-resolution imaging camera for alpha dust (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2022-065, 111 Pages, 2023/03

JAEA-Review-2022-065.pdf:6.8MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of high-resolution imaging camera for alpha dust" conducted from FY2018 to FY2021. Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. The present study aims to develop a novel alpha-ray camera consisting of imaging and an energy spectrometer to find the alpha dust to reduce the risk of health damage in decommissioning. We have developed the camera with a position resolution of less than 10 $$mu$$m, and the measurement test for the energy spectra was operated using several alpha-ray sources with an unfolding method.

JAEA Reports

Quantitative analysis of radioactivity distribution by imaging of high radiation field environment using gamma-ray imaging spectroscopy (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Kyoto University*

JAEA-Review 2022-027, 85 Pages, 2022/11

JAEA-Review-2022-027.pdf:5.72MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Quantitative analysis of radioactivity distribution by imaging of high radiation field environment using gamma-ray imaging spectroscopy" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. In this study, ETCC, a gamma-ray imaging system, was modified to be a portable device that can be used in 1F decommissioning project and can operate in high-dose environments. ETCC is the world's first gamma-ray camera capable of complete bijective imaging, the same as an optical camera. Therefore, ETCC can make general quantitative image analysis methods applicable to radiation, …

Journal Articles

Radiation imaging using an integrated radiation imaging system based on a compact Compton camera under Unit 1/2 exhaust stack of Fukushima Daiichi Nuclear Power Station

Sato, Yuki; Terasaka, Yuta

Journal of Nuclear Science and Technology, 59(6), p.677 - 687, 2022/06

 Times Cited Count:17 Percentile:95.64(Nuclear Science & Technology)

Journal Articles

Noninvasive imaging of hollow structures and gas movement revealed the gas partial-pressure-gradient-driven long-distance gas movement in the aerenchyma along the leaf blade to submerged organs in rice

Yin, Y.-G.*; Mori, Yoshinao*; Suzui, Nobuo*; Kurita, Keisuke; Yamaguchi, Mitsutaka*; Miyoshi, Yuta*; Nagao, Yuto*; Ashikari, Motoyuki*; Nagai, Keisuke*; Kawachi, Naoki*

New Phytologist, 232(5), p.1974 - 1984, 2021/12

 Times Cited Count:9 Percentile:65.39(Plant Sciences)

Rice ($$Oryza sativa$$) plants have porous or hollow organs consisting of aerenchyma, which is presumed to function as a low-resistance diffusion pathway for air to travel from the foliage above the water to submerged organs. However, gas movement in rice plants has yet to be visualized in real time. In this study involving partially submerged rice plants, the leaves emerging from the water were fed nitrogen-13-labeled nitrogen ([$$^{13}$$N]N$$_2$$) tracer gas, and the gas movement downward along the leaf blade, leaf sheath, and internode over time was monitored.

Journal Articles

Visualization of radioactive substances using a freely moving gamma-ray imager based on Structure from Motion

Sato, Yuki; Minemoto, Kojiro*; Nemoto, Makoto*; Torii, Tatsuo

Journal of Nuclear Engineering and Radiation Science, 7(4), p.042003_1 - 042003_12, 2021/10

Journal Articles

Practical tests of neutron transmission imaging with a superconducting kinetic-inductance sensor

Vu, TheDang; Shishido, Hiroaki*; Aizawa, Kazuya; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Soyama, Kazuhiko; Miyajima, Shigeyuki*; et al.

Nuclear Instruments and Methods in Physics Research A, 1006, p.165411_1 - 165411_8, 2021/08

 Times Cited Count:1 Percentile:18.91(Instruments & Instrumentation)

Journal Articles

Non-invasive $$^{11}$$C-imaging revealed the spatiotemporal variability in the translocation of photosynthates into strawberry fruits in response to increasing daylight integrals at leaf surface

Miyoshi, Yuta*; Hidaka, Kota*; Yin, Y.-G.*; Suzui, Nobuo*; Kurita, Keisuke; Kawachi, Naoki*

Frontiers in Plant Science (Internet), 12, p.688887_1 - 688887_14, 2021/07

 Times Cited Count:12 Percentile:76.93(Plant Sciences)

In this study, $$^{11}$$C-photosynthate translocation into strawberry fruits in individual plants was visualized non-invasively and repeatedly using a positron emission tracer imaging system (PETIS) to assess the spatiotemporal variability in the translocation dynamics in response to increasing daylight integrals. This is the first study to use $$^{11}$$C-radioisotopes to clarify the spatiotemporal variability in photosynthate translocation from source leaves to individual sink fruits in vivo in response to increasing daylight integrals at a high spatiotemporal resolution.

Journal Articles

Analysis and mapping of detailed inner information of crystalline grain by wavelength-resolved neutron transmission imaging with individual Bragg-dip profile-fitting analysis

Sakurai, Yosuke*; Sato, Hirotaka*; Adachi, Nozomu*; Morooka, Satoshi; Todaka, Yoshikazu*; Kamiyama, Takashi*

Applied Sciences (Internet), 11(11), p.5219_1 - 5219_17, 2021/06

 Times Cited Count:3 Percentile:30.84(Chemistry, Multidisciplinary)

Journal Articles

3D position and radioactivity estimation of radiation source by a simple directional radiation detector combined with structure from motion

Sato, Yuki; Minemoto, Kojiro*; Nemoto, Makoto*

Radiation Measurements, 142, p.106557_1 - 106557_6, 2021/03

 Times Cited Count:2 Percentile:31.78(Nuclear Science & Technology)

Journal Articles

Neutron Bragg-edge transmission imaging for microstructure and residual strain in induction hardened gears

Su, Y. H.; Oikawa, Kenichi; Shinohara, Takenao; Kai, Tetsuya; Horino, Takashi*; Idohara, Osamu*; Misaka, Yoshitaka*; Tomota, Yo*

Scientific Reports (Internet), 11, p.4155_1 - 4155_14, 2021/02

 Times Cited Count:16 Percentile:73.11(Multidisciplinary Sciences)

JAEA Reports

Quantitative analysis of radioactivity distribution by imaging of high radiation field environment using gamma-ray imaging spectroscopy (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Kyoto University*

JAEA-Review 2020-044, 79 Pages, 2021/01

JAEA-Review-2020-044.pdf:4.39MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Quantitative analysis of radioactivity distribution by imaging of high radiation field environment using gamma-ray imaging spectroscopy" Conducted in FY2019. In this study, a gamma-ray imaging detector, ETCC, will be improved to operate under high dose conditions, and a portable system will be constructed to be installed in the Fukushima Daiichi Nuclear PowerStation (1F). In addition, the development and combination of ETCC-based quantitative radioactivity distribution analysis methods will lead to innovative advances in the six key issues to be solved for the decommissioning of the 1F. This system will enable us to quantitatively visualize the three-dimensional radiation distribution and its origin.

JAEA Reports

Development of high-resolution imaging camera for alpha dust (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2020-039, 59 Pages, 2021/01

JAEA-Review-2020-039.pdf:4.18MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of high-resolution imaging camera for alpha dust" conducted in FY2019. We have developed an imaging camera with a position resolution of less than approximately 10 $$mu$$m to monitor alpha dust in the nuclear plant during the decommissioning process, because the operators avoid to drawing in such dusts. Moreover, we have developed real-time monitor system with optical fiber and scintillator under high dose-rate condition.

Journal Articles

Automatic data acquisition for visualizing radioactive substances by combining a gamma-ray imager and an autonomous mobile robot

Sato, Yuki; Minemoto, Kojiro*; Nemoto, Makoto*; Torii, Tatsuo

Journal of Instrumentation (Internet), 16(1), p.P01020_1 - P01020_18, 2021/01

 Times Cited Count:1 Percentile:9.32(Instruments & Instrumentation)

Journal Articles

Measurements of intensity of produced light in water during irradiations of electron beams with energies above and below the Cerenkov-light threshold

Yamamoto, Seiichi*; Nagao, Yuto*; Kurita, Keisuke; Yamaguchi, Mitsutaka*; Kawachi, Naoki*

Journal of Instrumentation (Internet), 16(1), p.P01007_1 - P01007_9, 2021/01

 Times Cited Count:0 Percentile:0(Instruments & Instrumentation)

Luminescence of water during irradiation with particles having energies below the Cerenkov-light threshold was recently found for various types of radiations. However, the relation between the intensities of Cerenkov light and of the luminescence of water at the beam energy below the Cherenkov threshold is not well known. To clarify this point, we measured the produced light irradiating a water sample with electron beams having maximum energies above and below the Cerenkov-light threshold.

Journal Articles

Homogeneity of neutron transmission imaging over a large sensitive area with a four-channel superconducting detector

Vu, TheDang; Shishido, Hiroaki*; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Miyajima, Shigeyuki*; Oku, Takayuki; Soyama, Kazuhiko; Aizawa, Kazuya; et al.

Superconductor Science and Technology, 34(1), p.015010_1 - 015010_10, 2021/01

 Times Cited Count:3 Percentile:27.71(Physics, Applied)

Journal Articles

Remote detection of radioactive hotspot using a Compton camera mounted on a moving multi-copter drone above a contaminated area in Fukushima

Sato, Yuki; Ozawa, Shingo*; Terasaka, Yuta; Minemoto, Kojiro*; Tamura, Satoshi*; Shingu, Kazutoshi*; Nemoto, Makoto*; Torii, Tatsuo

Journal of Nuclear Science and Technology, 57(6), p.734 - 744, 2020/06

 Times Cited Count:20 Percentile:93.76(Nuclear Science & Technology)

Journal Articles

Visualising spatio-temporal distributions of assimilated carbon translocation and release in root systems of leguminous plants

Yin, Y.-G.*; Suzui, Nobuo*; Kurita, Keisuke; Miyoshi, Yuta*; Unno, Yusuke*; Fujimaki, Shu*; Nakamura, Takuji*; Shinano, Takuro*; Kawachi, Naoki*

Scientific Reports (Internet), 10, p.8446_1 - 8446_11, 2020/06

 Times Cited Count:11 Percentile:59.51(Multidisciplinary Sciences)

The release of rhizodeposits differs depending on the root position and is closely related to the assimilated carbon (C) supply. Therefore, quantifying the C partitioning over a short period may provide crucial information for clarifying root-soil carbon metabolism. A non-invasive method for visualising the translocation of recently assimilated C into the root system inside the rhizobox was established using $$^{11}$$CO$$_{2}$$ labelling and the positron-emitting tracer imaging system. The spatial distribution of recent $$^{11}$$C-photoassimilates translocated and released in the root system and soil were visualised for white lupin ($$Lupinus albus$$) and soybean ($$Glycine max$$). Our method enabled the quantification of the spatial C allocations in roots and soil, which may help to elucidate the relationship between C metabolism and nutrient cycling at specific locations of the root-soil system in response to environmental conditions over relatively short periods.

111 (Records 1-20 displayed on this page)